Improvement of Selective Attention Using rTMS in Healthy Individuals

Document Type : Research Paper


1 Department of Psychology, , University of Tehran, Tehran, Iran

2 Department of Psychology, faculty of psychology and Educational Science, University of Tehran


Previous research have shown that repetitive transcranial magnetic stimulation (rTMS) enhances individuals’ cognitive performance. Executive function, particularly selective attention, is one of the fundamental parts of cognitive performances. Neuro-imaging studies indicated proved the role of dorsolateral prefrontal cortex (DLPFC) in selective attention. The aim of this study was to evaluate the effect of rTMS on healthy individuals’ performance executing stroop task. Thirty healthy subjects received one session of high-frequency rTMS on their left DLPFC. They were instructed to perform stroop task before and after stimulation. The results showed that response time to congruent stimuli decreased significantly in active group. No significant change was observed in incongruent trials. The findings verified the role of left DLPFC on top-down attentional control. It could be concluded that administering rTMS on individuals’ left DLPFC can result in positive effect on selective attention.


حسن­زاده، س.، و احمدی، ا. (1394). فراتحلیلی بر اثربخشی مداخله در حوزه حافظه فعال. فصل‌نامه پژوهش‌های کاربردی روانشناختی. 6(1)، 46-25.
عابدان‌زاده، ر.، و آلبوغبیش، س. (1396). تأثیر تحریک الکتریکی فراجمجمه‌ای بر توجه انتخابی در شرایط تکلیف دوگانه. فصلنامه پژوهش‌های کاربردی روانشناختی. 8(3)، 14-10.
رستمی، ر.، بشارت، م.، کریمی، م.، و فراهانی، ح. (1395). اثربخشی تحریک الکتریکی مستقیم از روی جمجمه در تغییر عملکرد قشر مغز در افراد مبتلا به چاقی. فصل‌نامه پژوهش‌های کاربردی روانشناختی. 7(3)، 145-127.
جورج، ام. اس.، و بلمیکر، آر. اچ. (1395). تحریک مغناطیسی فراجمجمه ای در پژوهش و درمان، (ترجمه رضا رستمی، رضا کاظمی، ساناز خمامی و محمد حبیب­نژاد). تهران: انتشارات دانشگاه تهران (تاریخ انتشار به زبان اصلی 2007).
آلبوغبیش، س.، شتاب بوشهری، ن.، دانشفر، ا.، و عابدان‌زاده، ر. (1395). بررسی تسهیل و تداخل معنایی اثر استروپ بر دوره بی‌پاسخی روان‌شناختی. فصلنامهعلمی-پژوهشیعصب روانشناسی. 2(۲)، 21-7.
Banich, M. T., Milham, M. P., Jacobson, B. P., Webb, A., Wszalek, T., Cohen, N. J., & Kramer, A. F. (2001). Attentional selection and the processing of task-irrelevant information: insights from fMRI examinations of the Stroop task. Cogn Brain Res. 134, 459-470.
Boggio, P. S., Fregni, F., Bermpohl, F., Mansur, C. G., Rosa, M., Rumi, D. O., ... & Marcolin, M. A. (2005). Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's disease and concurrent depression. Movement disorders: official journal of the Movement Disorder Society. 20(9), 1178-1184.
Boggio, P. S., Rocha, R. R., da Silva, M. T., & Fregni, F., (2008). Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neurosci. Lett. 447(2-3), 101-105.
Boggio, P. S., Valasek, C. A., Campanhã, C., Giglio, A. C. A., Baptista, N. I., Lapenta, O. M., & Fregni, F., (2011). Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s disease. Neuropsychol. Rehabil. 21(5), 703-716.
Chan, A. Y., Rolston, J. D., Rao, V. R., & Chang, E. F. (2018). Effect of neurostimulation on cognition and mood in refractory epilepsy. Epilepsia Open. 3(1), 18-29.
Cheng, C. P. W., Wong, C. S. M., Lee, K. K., Chan, A. P. K., Yeung, J. W. F., & Chan, W. C. (2018). Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: a systematic review and meta‐analysis. International journal of geriatric psychiatry. 33(1), e1-e13.
Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 85, 895-908.
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol Rev. 97(3), 332-336.
Clark, V. P., Coffman, B. A., Trumbo, M. C., & Gasparovic, C. (2011). Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neuroscience letters. 500(1), 67-71.
Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D., ... & Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 59(1), 117-128.
Dinkelbach, L., Brambilla, M., Manenti, R., & Brem, A. K. (2017). Non-invasive brain stimulation in Parkinson’s disease: Exploiting crossroads of cognition and mood. Neuroscience & Biobehavioral Reviews. 75, 407-418.
Egner, T., & Hirsch, J., (2005). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage. 24(2), 539-547.
Floden, D., Vallesi, A., & Stuss, D. T., (2011). Task context and frontal lobe activation in the Stroop task. J. Cogn. Neurosci. 23(4), 867-879.
Guse, B., Falkai, P., & Wobrock, T., (2010). Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J. Neural Transm. 117(1), 105-122.
Hadland, K. A., Rushworth, M. F. S., Passingham, R. E., Jahanshahi, M., & Rothwell, J. C. (2001). Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. J. Cogn Neurosci. 13(8), 1097-1108.
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 324(5927), 646-648.
Harrison, B. J., Shaw, M., Yucel, M., Purcell, R., Brewer, W. J., Strother, S. C., Egan, G. F., Olver, J. S., Nathan, P. J., & Pantelis, C. (2005). Functional connectivity during Stroop task performance. Neuroimage. 24(1), 181-191.
Hayward, G., Goodwin, G. M., & Harmer, C. J. (2004). The role of the anterior cingulate cortex in the counting Stroop task. Experimental brain research. 154(3), 355-358.
Hayward, G., Mehta, M. A., Harmer, C., Spinks, T. J., Grasby, P. M., & Goodwin, G. M. (2007). Exploring the physiological effects of double‐cone coil TMS over the medial frontal cortex on the anterior cingulate cortex: an H215O PET study. European Journal of Neuroscience. 25(7), 2224-2233.
Huber, T. J., Schneider, U., & Rollnik, J. (2003). Gender differences in the effect of repetitive transcranial magnetic stimulation in schizophrenia. Psychiatry Res. 120(1), 103-105.
Hwang, J. H., Kim, S. H., Park, C. S., Bang, S. A., & Kim, S. E. (2010). Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res. 1329, 152-158.
Kapoula, T., Bonnet, A., Bourtoire, P., Demule, E., Fauvel, C., Quilicci, C., & et al. (2010). Poor Stroop performances in 15-year-old dyslexic teenagers. Experimental Brain Research. 203(2), 419-425.
Kim, S. H., Han, H. J., Ahn, H. M., Kim, S. A., & Kim, S. E. (2012). Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neuroscience Research. 74(3), 256-260.
Lezak, M. D. (2004) Neuropsychological Assessment, 4th edn. Oxford University Press, Oxford.
Iimori, T., Nakajima, S., Miyazaki, T., Tarumi, R., Ogyu, K., Wada, M., ... & Mimura, M. (2018). Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer's disease: A systematic review. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 88, 31-40.
MacDonald III, A.W., Cohen, J. D., Stenger, V. A., & Carter, C. S., (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 288(5472), 1835-1838.
McMEEKAN, E. R., & Lishman, W. A. (1975). Retest reliabilities and interrelationship of the Annett hand preference questionnaire and the Edinburgh handedness inventory. British Journal of Psychology. 66(1), 53-59.
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet. 325(8437), 1106-1107.
Mondino, M., Thiffault, F., & Fecteau, S. (2015). Does non-invasive brain stimulation applied over the dorsolateral prefrontal cortex non-specifically influence mood and emotional processing in healthy individuals? Frontiers in cellular neuroscience. 9, 399.
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience. 7(1), 1-17.
Olk, B., Peschke, C., & Hilgetag, C. C. (2015). Attention and control of manual responses in cognitive conflict: Findings from TMS perturbation studies. Neuropsychologia. 74, 7-20.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9(1), 97-113.
Pecchinenda, A., Ferlazzo, F., & Lavidor, M. (2015). Modulation of selective attention by polarity-specific tDCS effects. Neuropsychologia. 68, 1-7.
Rektorová, I., & Anderková, Ľ. (2017). Noninvasive Brain Stimulation and Implications for Nonmotor Symptoms in Parkinson's Disease. In International review of neurobiology. 134, 1091-1110. Academic Press.
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Safety of TMS Consensus Group. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology. 120(12), 2008-2039.
Rushworth, M. F. S., Hadland, K. A., Paus, T., & Sipila, P. K. (2002). Role of the Human Medial Frontal Cortex in Task Switching: A Combined fMRI and TMS Study. J. Neurophysiol. 87(5), 2577-2592.
Sanchez-Lopez, A., Vanderhasselt, M. A., Allaert, J., Baeken, C., & De Raedt, R. (2018). Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cognitive, Affective, & Behavioral Neuroscience. 18(3), 485-494.
Silvanto, J., Muggleton, N., & Walsh, V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends in Cognitive Sciences. 12(12), 447-454.
Stahl, S. M. (2013). Stahl's essential psychopharmacology: neuroscientific basis and practical applications. Cambridge university press.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J.Exp Psychol. 18(6), 643-662.
Tortella, G., Selingardi, P. M., Moreno, M., L., Veronezi, B. P., & Brunoni, A. R. (2014). Does non-invasive brain stimulation improve cognition in major depressive disorder? A systematic review. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 13(10), 1759-1769.
Vanderhasselt, M.-A., de Raedt, R., Baeken, C., Leyman, L., D’haenen, H., (2006a). The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Exp. Brain Res. 169(2), 279-282.
Vanderhasselt, M. A., de Raedt, R., Baeken, C., Leyman, L., & D’haenen, H. (2006b). The influence of rTMS over the right dorsolateral prefrontal cortex on intentional set switching. Exp. Brain Res. 172(4), 561-565.
Vanderhasselt, M. A., De Raedt, R., Baeken, C., Leyman, L., Clerinx, P., & D'haenen, H. (2007). The influence of rTMS over the right dorsolateral prefrontal cortex on top-down attentional processes. Brain research. 1137, 111-116.
Vanderhasselt, M. A., De Raedt, R., & Baeken, C., (2009). Dorsolateral prefrontal cortex and Stroop performance: tackling the lateralization. Psychon. Bull. Rev. 16(3), 609-612.
Vanderhasselt, M. A., De Raedt, R., Leyman, L., & Baeken, C., (2010). Role of the left DLPFC in endogenous task preparation: experimental repetitive transcranial magnetic stimulation study. Neuropsychobiology. 61(3), 162-168.
Vitkovitch, M., Bishop, S., Dancey, C., & Richards, A. (2002). Stroop interference and negative priming in patients with multiple sclerosis. Neuropsychologia. 40(9), 1570-1576.
West, R., & Baylis, G. C. (1998). Effects of increased response dominance and contextual disintegration on the Stroop interference effect in older adults. Psychology and aging. 13(2), 206-217.