شبکه حالت پیش‌فرض مغز: مروری بر تاریخچه، ساختار تشریحی و کارکردها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه روان‌شناسی، دانشگاه تهران، تهران، ایران

2 دانشجوی دکتری روان‌شناسی سلامت، دانشگاه تهران، تهران، ایران

3 استاد گروه روماتولوژی، دانشگاه علوم پزشکی تهران، تهران، ایران

4 استاد گروه مهندسی برق، دانشگاه تهران، تهران، ایران

5 استادیار گروه روان‌شناسی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

شبکه حالت پیش‌فرض مغز (DMN) یکی از سیستم‌های مغزی در مقیاس بزرگ است که از نظر تشریحی به‌خوبی تعریف شده است. این شبکه که در حالت استراحت فعالیت بیشتری نشان می‌دهد، با پردازش افکار مستقل از محرک، افکار خودارجاعی و یادآوری خاطرات زندگی‌نامه‌ای مرتبط است. نواحی اصلی شبکه DMN شامل قشر پیش‌پیشانی میانی (mPFC)، قشر سینگولیت خلفی (PCC)، قشر آهیانه‌ای پایینی (IPL)، قشر گیجگاهی جانبی (LTC) و ساختار هیپوکامپال (HF) هستند. این شبکه از دو زیرسیستم تشکیل شده است: زیرسیستم لوب گیجگاهی میانی که داده‌هایی از تجارب قبلی فرد در اختیار می‌گذارد و زیرسیستم پیش‌پیشانی میانی که از این اطلاعات برای ایجاد افکار مستقل از محرک و مربوط به خود استفاده می­کند. مطالعات نشان می‌دهند که شبکه حالت پیش‌فرض در مقابل تجارب مختلف انعطاف­پذیری دارد و کارکرد آن در بعضی از بیماری­ها و اختلالات همچون اسکیزوفرنی، افسردگی، طیف اُتیسم و آلزایمر تغییر کرده است. از‌سوی‌دیگر، این شبکه به درمان‌های زیستی و روان‌شناختی پاسخ می‌دهد. در این مقاله پس از مروری بر تاریخچه و ساختار تشریحی شبکه حالت پیش‌فرض مغز، به کارکردها، تغییرات بهنجار طی تحول و تغییرات آن در انواع بیماری‌ها و اختلالات می‌پردازیم و در نهایت، مروری بر کاربردهای بالینی این یافته‌ها در زمینه درمان خواهیم داشت. 

کلیدواژه‌ها


عنوان مقاله [English]

The Brain's Default Mode Network: A Review on History, Anatomy and Functions

نویسندگان [English]

  • Reza Rostami 1
  • Zeinab Khajavi 2
  • Abdulrahman Rostamian 3
  • Gholamali Hoseinzadeh Dehkordi 4
  • Nima Ghorbani 1
  • Hojjatollah Frahani 5
1 Department of Psychology, Faculty of psychology and Educational Science, University of Tehran
2 Department of Psychology, Faculty of Psychology and Educational Sciences, University of Tehran
3 Department of Rheumatology, Faculty of Medicine, Tehran University of Medical Sciences
4 Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, University of Tehran
5 Department of Psychology, Tarbiat Modarres University
چکیده [English]

The Default Mode Network (DMN) is one of the large-scale networks of the brain that is anatomically defined well. This network that is active during rest state, is associated with stimulus-independent thought, self-reflection and autobiographical memory retrieval. The regions of DMN include medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), inferior parietal lobule (IPL), lateral temporal cortex (LTC) and hippocampal formation (HF). This network consists of two subsystems: the medial temporal lobe subsystem, which provides data from previous experiences and the medial prefrontal subsystem, which uses this information during the construction of self-relevant and stimulus-independent thoughts. Studies have shown that DMN have neuroplasticity in front of kinds of experiences and its function is impaired in some of the diseases and disorders such as schizophrenia, depression, autism spectrum, and Alzheimer. Also, this network is effective in biological and psychological treatments. In this article, after reviewing the history and anatomy of the DMN, the focus will be on DMN’s functions, its normal changes in development, and its changes in a variety of diseases and disorders. Finally, to the clinical application of these findings will be discussed

کلیدواژه‌ها [English]

  • The Default Mode Network
  • Brain Rest State
  • Functional Connectivity
Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLOS Computational Biology. 3(2), 17.

Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I., & Reiman, E. M. (2002). Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential out- come measure in Alzheimer’s disease treatment studies. American Journal of Psychiatry. 159(5), 738-745.

Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., & et al. (1995). Remembering the past: two facets of episodic memory explored with positron emission tomog- raphy. American Journal of Psychiatry. 152(11), 1576–85.

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., & et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron. 56(5), 924-935.

Arieli, A., Shoham, D., Hildesheim, R., & Grinvald, A. (1995). Coherent spatiotemporal patterns of ongoing activity re- vealed by real-time optical imaging coupled with single- unit recording in the cat visual cortex. Journal of Neurophysiology. 73(5), 2072-93.

Benson, D. F., Kuhl, D. E., Hawkins, R. A., Phelps, M. E., Cummings, J. L., & Tsai, S. Y. (1983). The fluorodeoxyglucose 18 F scan in Alzheimer’s disease and multi-infarct dementia. Archives of Neurology. 40(12), 704-711.

Berger, H. (1929). Uber des Elektrenkephalogramm des Menschen. 87(1), 527–570.

Berger, H. (1931/1969). On the electroencephalogram of man: third report. Supplements to Clinical Neurophysiology. 28, 95-132.

Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J., & Jonides, J. (2010). Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. In press.

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537-41.

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences. 1124, 1-38.

Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., & et al. (2005). Molecular, structural, and func-tional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience. 25(34), 7709-17.

Canli, T., Cooney, R. E., Goldin, P., Shah, M., Sivers, H., & et al. (2005). Amygdala reactivity to emotional faces predicts improvement in major depression. Neuroreport. 16(12), 1267-70.

Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry. 68(5), 425-32.

Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., & et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. Journal of Neuroscience. 26(40), 10222-31.

Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport. 17(16), 1687-90.

Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., & et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the USA. 103(37), 13848-53.

Daselaar, S. M., Prince, S. E., Dennis, N. A., Hayes, S. M., Kim, H., & Cabeza, R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Frontiers in Human Neuroscience. 3, 13.

De Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., & et al. (2001). Prediction of cogni-tive decline in normal elderly subjects with 2-[(18) F] fluoro-2-deoxy-D-glucose/positron-emission tomogra-phy (FDG/PET). Proc. Natl. Acad. Sci. U.S.A., 98, 10966-71.

DeCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., & Gabrieli, J. D. (2004). Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage. 21(1), 436-43.

DeCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., & et al. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the USA. 102(51), 18626-31.

Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., & et al. (2008). Prediction of human errors by mal-adaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the USA. 105(16), 6173-78.

Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., & et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences of the USA. 105(10), 4028-32.

Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., & et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLOS Computational Biology. 5(5), e1000381.

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience. 8(9), 700-711.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., VanEssen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the USA. 102(27), 9673-8.

Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state de- fault mode of brain function hypothesis. Human Brain Mapping. 26(1), 5-29.

Fransson, P., Skiold, B., Horsch, S., Nordell, A., Blennow, M., & et al. (2007). Resting-state networks in the infant brain. Proceedings of the National Academy of Sciences of the USA, 104(39), 15531-6.

Frith, C. (1996). The role of the prefrontal cortex in self- consciousness: the case of auditory hallucinations. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 351(1346), 1505-12.

Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. American Journal of Psychiatry. 164(3), 450-457.

Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D., & Burgess, P. W. (2007). Comment on “Wandering minds: the default network and stimulus-independent thought”. Science. 317(5834), 43.

Greicius, M. D., & Menon, V. (2004). Default-mode activity dur-ing a passive sensory task: uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience. 16(9), 1484-92.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the USA. 100(1), 253-258.

Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., & et al. (2009). Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology. 34(4), 932-943.

Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience. 2(10), 685-694.

Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential men- tal activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the USA. 98(7), 4259-64.

Hahn, B., Ross, T. J., & Stein, E. A. (2007). Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cerebral Cortex. 17(7), 1664-71.

Hamilton, J. P., Furman, D. J., Chang, C., Thomason, M. E., Dennis, E., & Gotlib, I. H. (2011). Default-mode and task positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biological Psychiatry. 70(4), 327-333.

Harrison, B. J., Yucel, M., Pujol, J., & Pantelis, C. (2007). Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophrenia Research. 91(1-3), 82-86.

Hasson, U., Nusbaum, H. C., & Small, S. L. (2009). Task-dependent organization of brain regions active during rest. Proceedings of the National Academy of Sciences of the USA. 106(26), 10841-6.

Ingvar, D. H. (1974). Patterns of brain activity revealed by mea-surements of regional cerebral blood flow. Alfred Benzon Symposium VIII. Copenhagen.

Ingvar, D. H. (1979). “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness: on the functional anatomy of the conscious state. Acta Neurologica Scandinavica. 60(1), 12-25.

Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience. 14(5), 785-794.

Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: resting functional abnormalities in autism. Proceedings of the National Academy of Sciences of the USA. 103(21), 8275-80.

kucyi, A., Moayedi, M., Weissman-Fogel, I., Goldberg, M. B., Freeman, B.V., Tenenbaum, H. C., Davis, K. D. (2014). Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. Journal of Neuroscience. 34(11), 3969-3975.

Kumari, V., Peters, E. R., Fannon, D., Antonova, E., Premkumar, P., & et al. (2009). Dorsolateral prefrontal cortex activity predicts responsiveness to cognitive-behavioral therapy in schizophrenia. Biological Psychiatry. 66(6), 594-602.

Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., & et al. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin. 54(3), 287-298.

Mesulam, M. M. (2000). Principles of Behavioral and Cognitive Neu-rology. NewYork: Oxford University Press.

Moran, J. M., Macrae, C. N., Heatherton, T. F., Wyland, C. L., & Kelley, W. M. (2006). Neuroanatomical evidence for distinct cognitive and affective components of self. Journal of Cognitive Neuroscience. 18(9), 1586-94.

Nolen-Hoeksema, S., Wisco, B., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science. 3(5), 400-424.

Raichle, M. E. (2010a). The brain’s dark energy. Scientific American, 302, 44-49.

Raichle, M. E. (2010b). Two views of brain function. Trends in Cognitive Sciences. 14, 180-190.

Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience. 29, 449-476.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & et al. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the USA. 98(2), 676-682.

Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking Developmental Psychology and Functional Neuroimaging. 55, 87-124.

Shannon, B. J., Snyder, A. Z., Vincent, J. L., & Buckner, R. L. (2006). Spontaneous correlations and the default network: effects of task performance. Society for Neuroscience Abstracts. 119, 5.

Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., & et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the USA. 106(6), 1942-47.

Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., & et al. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience. 9(5), 648-663.

Singh, K. D., & Fawcett, I. P. (2008). Transient and line.arly graded deactivation of the human default-mode network by a visual detection task. Neuroimage. 41(1), 100-112.

Sokoloff, L., Mangold, R., Wechsler, R. L., Kenney, C., & Kety, S. S. (1955). The effect of mental arithmetic on cere- bral circulation and metabolism. Journal of Clinical Investigation. 34(7 Pt 1), 1101-1108.

Sperling, R. A., Laviolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., & et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 63(2), 178-188

Stevens, W. D., Buckner, R. L., & Schacter, D. L. (2010). Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex. 20(8), 1997-2006.

Surguladze, S. A., Chu, E. M., Marshall, N., Evans, A., Anilkumar, A. P., & et al. (2011). Emotion processing in schizophrenia: fMRI study of patients treated with risperidone long-acting injections or conventional depot medication. Journal of Psychopharmacology. 25(6), 722-733.

Tsodyks, M., Kenet, T., Grinvald, A., & Arieli, A. (1999). Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science. 286(5446), 1943-6

Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., & et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 447(7140), 83-86.

Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., & et al. (2007). Altered functional connectivity in early Alzheimer’s dis- ease: a resting-state fMRI study. Human Brain Mapping. 28(10), 967-978.

Whitfield-Gabrieli, S., Moran, J. M, Nieto-Castanon, A., Triantafyllou, C., Saxe, R., & Gabrieli, J. D. (2010). Associations and dissociations between default and self-reference networks in the human brain. Neuroimaging. 55(1), 225-232.

Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., & et al. (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research. 97(1-3), 194-205.